

WinMon.BE

Key results of the seabird and bat monitoring in Belgian offshore wind farms

Royal Belgian Institute of Natural Sciences

Robin Brabant

Context

Figure 1. Map of the North Sea showing that southwards migrating seabirds become concentrated within the cuneiform southern North Sea.

TRAPPED WITHIN THE CORRIDOR OF THE SOUTHERN NORTH SEA: THE POTENTIAL IMPACT OF OFFSHORE WIND FARMS ON SEABIRDS

ERIC W.M. STIENEN VAN WAEYENBERGE ECKHART KUIJKEN Institute of Nature Conservation, Kliniekstraat 25, B-1070 Brussels, Belgium. JAN SEYS

Figure 3: Installed, planned and foreseen wind farm areas in the North Sea (red: 2023, blue: 2030, green: 2030+, as of 09/2018)

Context

3

OWF effects

Anticipated effects:

- changes in seabird abundance and/or distribution (=displacement)
 - avoidance attraction
- Collision: increased mortality
- Barrier to migration

Monitoring / Research

- Seabird surveys
- Collision risk modelling
- Radar research

Monitoring started in 2010: Here only a few key results!

- Monthly ship-based counts since 2010
- In impact and control areas
- INBO (Research Institute Nature and Forest)

Common Guillemot <u>avoidance</u> of the Bligh Bank

offshore wind farm

Great black-backed gull <u>attraction</u> at the Thornton

Bank offshore wind farm

Review of seabird displacement research at 16 European OWFs:

consistent responses for several seabird species

- Attraction: Great Cormorant & Great Black-backed Gull
- Avoidance: Northern Gannet, Common Guillemot, Razorbill & Redthroated Diver

yet inconsistent results for e.g. Herring Gull, Lesser Black-backed Gull, Blacklegged Kittiwake, ...

Avoidance of Red-throated diver up to 16km from OWF (Mendel et al., 2019)

https://doi.org/10.1016/j.jenvman.2018.10.053)

Loon distribution in the eastern German Bight before and after construction of offshore windfarms

Seabird collision risk

<u>Collision risk modelling (CRM)</u>: estimate collision risk based on bird related variables and turbine / OWF variables (Band, 2012)

Large variability	Compare different scenarios:sitingturbine dimensions and number
Large uncertainty	Identify species at risk

 \rightarrow 290.3 \pm 205.4 collision / year for six most abundant seabird species inside Belgian OWFs

→ lesser and greater black-backed gull

→ Rough extrapolation for North Sea scenario hints towards population effects

Hydrobiologia DOI 10.1007/s10750-015-2224-2

OFFSHORE WIND FARM IMPACTS

Towards a cumulative collision risk assessment of local and migrating birds in North Sea offshore wind farms

Robin Brabant · Nicolas Vanermen · Eric W. M. Stienen · Steven Degraer

Detecting / predicting peaks in bird migration

0

n

01Oct

01Nov

01Dec

- \rightarrow if in rotor swept zone: collision risk
- Input for prediction models of peaks at rotor height
- Curtailment measures (cfr. Borssele area)

Bat research in Belgian OWFs

Bats are detected in North sea OWFs during spring and autumn <u>migration</u>

Research questions:

- 1. Influence weather conditions during migration?
- 2. Activity at nacelle height?

Study autumn 2017

- 11 Batcorders on 7 different turbines
 - 7 at 16m
 - o 4 at 93m = nacelle
- 151 recordings of call sequences
- 23 nights
- All Pipistrellus nathusii

wind direction

Activity of bats at sea

0.04 cut-in wind speed: average wind speed at night during 3 to 4 m/s0.03 study period: 7.6 \pm 4.5 m/s **DP10** (normalised) Average wind speed when bats are 66 % of recordings when recorded: 3.1 ± 1.9 m/s 0.02 wind speed $\leq 3 \text{ m/s}$ 87 % when ws \leq 5 m/s 0.01 0.00 10 12 14 16 18 20 22 24 26 6 8 wind speed (m/s) 0.04 DP10 (normalised) Preference for E and SE wind • 2. Tailwind conditions to cross the North 0.02 Sea or wind drift? 0.00 S Ν NE E SE SW W NW 13

28

Activity at nacelle height

Registered activity at nacelle height is 10% of activity at 16m:

- 20.3 recordings on average by 'low' bat detectors
- 2.3 recordings on average by detectors at nacelle height

Remarks:

- detection range ca. 25 m for Pipistrellus sp.
 → need for recordings in the entire rotor swept zone
- N recordings \neq collision risk

More information

<u>robin.brabant@naturalsciences.be</u> <u>https://odnature.naturalsciences.be/mumm/en/windfarms/</u>